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Equations descrlblng the reaction of a space vehicle to rotating
machinery and t6 mass motion inside the vehicle are formulated.
These equations include a component that has been neglected in most
earlier studies, i.e., the angular impulse introduced by the moving
mass.

The dynamics of a cylindrical space station rotating around its
major axis once every [0 seéconds are evaluated numerically. The
long cylinder provides the large distance between the axis of rotation
and the crew compartment needed to generate comfortable artificial
gravity. But the rotating cylinder is known to have little dynamic
stability around its longitudinal axis. Necvertheless, the stability
characteristics of this configuration are found to be acceptable provided
there is as little as 0. 2% asymmetry between the major and inter-
mediate moments of inertia,

Detailed investigations were performed on an analog computer.
These show the effect of path and timing on the magnitude of the
disturbance caused by a mass relocation,

Also analyzed in some detail are ways to minimize roll, either by
corrective motion of the astronauts or by a simple control system
that uses the gyroscopic torque generated by rotating the body-fixed
axis of a flywheel. . CACHAL 9
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P, 9, T

E, M, §

DEFINITION OF SYMBOLS

DEFINITION
Space-fixed reference axes
Euler angles
Body-fixed axes
Angular impulse
Angular velocity
Inertia tensor
Moment of inertia

Components of angular velocity in
body-fixed coordinate system

Determinant
Principal axes

Euler angles between principal axes
and reference axes

Period
Movable mass within space
Radius vector of movable mass

Radius vector of center of gravity in
body-fixed coordinate system

Total mass of space station

Position vector of mass point in
space-fixed coordinate system

iv




DEFINITION OF SYMBOLS

(Continued)
SYMBOL DEFINITION
v Velocity
h Angular impulse of rotating machinery
P Power
L Torque
E Energy
a, B, Y Euler angles between principal axes

and reference axes

Subscripts
c Of command
F Of flywheel

A dot over a symbol denotes the first derivative with respect
to time.

Two dots over a symbol denote the second derivative with
respect to time.

A bar over a symbol denotes a vector.

A tilde (~) over a symbol denotes a matrix,
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SECTION I, " INTRODUCTION

The environment necessary for the life support of astronauts
during extended space flights will probably have to include artificial
gravity. During periods of coasting, this will be generated by
continuous rotation of the space station around an axis that is
sufficiently remote from the crew compartment to exclude extreme
variations in the centrifugal forces within the compartment.

Our investigation will be limited to a station of cylindrical shape,
since this is the geometry most likely to be used for early flights of
long duration. As a further qualification, since the rotating cylinder
is highly stable around its two axes of large moment of inertia, only
the requirements for stability around the third axis, i.e., the
longitudinal axis, will be examined.




SECTION II. ANALYSIS

A. THE UNDISTURBED SYSTEM

In the absence of external torques, the angular impulse of the

system remains constant. Let us assume that the angular impulse is

aligned with the Z axis of the space-fixed reference coordinate
system X, Y, Z (Figure 1). Using the transformation matrix from

the reference coordinate system to the body-fixed coordinate system

expressed in Euler angles ¢, 8, ¥, we get the components of the
angular impulse in the body-fixed coordinate system x, y, z
(Figure 1):

~ ]
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The angular impulse is related to the angular velocity by the
vector equation

Ro-Ta

>PCf. Fifer, Stanley, Analogue Computation, Vol. IV, New York,
McGraw-Hill (1961), pg. 1091
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The inertia tensor I is given by a matrix

I - I jat i (4)
L) )y
'L"UL/ T‘EY’*/ L

If there is no mass motion inside the space station, the components of
the tensor are constant in the body-fixed coordinate system. Calling
the components of the angular velocity in the body-fixed coordinate

system p, q, r and using equations (2), the vector equation (3) can be
written in components

Hé(; I*P *I%C’] *Im\!‘:— - Hm@

e Tagp Ly dpr= Hubom® 0
H :‘:—_MF _%qutj_lr HCO’D@CO’Dq)

Using determinants, equations (5) are solved for p, q, and r

) = j} | (6)




Lo ~Hund L,
DZ = '.L;oa7 HWD@A’V\/\¢ /' ‘j.:?{—)_’

jD:)) = —I ) T%,/ HC/OQ@W\<P

We now express the angular velocities in terms of gimbal
angles and rates:

p- # - Y e ,
4= @m‘# + W@@m‘P (@)
= \GA/W\(P + ﬂ{/m@wﬁ)



Or, solving for ¢, 6, and ¥, we get
6.; 6‘ W)‘}) - (&'\v/\/\¢ (8)
(W'ng;E):: (1 Abvvﬂqb‘¥ & wn 45
Finally, introducing (6) into (8), we get
2= D, +(Dy ot Dy e ) bam 6
:D@ = ]lm?g — ‘Db a/w\?b (9)
Dimb= Dy s 1D, et

Equations (9) describe the attitude of a body with an angular impulse,
This system of first-order differential equations can be simplified if
we choose a particular body-fixed coordinate system that is aligned
with the principal axes &, M, {. The inertia tensor I can then be
expressed by a diagonal matrix: )

I3 O O
0
L O 9, LB

(10)

J—2
T
—
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T < H un e (11)




Rewriting (8) in our new notation,

. ﬂ.,(ww ﬂ.ﬂﬁwfmw

Q = IL% +“M/.'M3 (12)
Voo - JL(M% +JL5(mL(’
Finally, we get
v HrL - L ‘
8= “?J:(I,,( LS}WD%‘W"‘Q?
. .Y t (13a)
Ve H(oty
In f5>
Q= H(“i*(%h Mf;))mﬁ/

or, using

we get



For rotational symmetry (I'ﬂ = Ig) we get
(3’ \é | "i’ = Const.
nd
. Q; - ek
Dy A s g

J

These equations describe the nutational motion of a cylinder of perfect
rotational symmetry. The length axis is moving on a circular cone
with constant angular and roll velocity--a well-known phenomenon.

Let us now consider the case of a body with near rotational
symmetry around the length axis and small angle o~ :

NIPZE

and



Combining the first and last of these equations, we eliminate ~
and get

Ll Ly e AT sin Lo g
LQ:——- 2\('}"3 T>TL -~
B2 S

i.e., the equation for the mathematical pendulum. For Al positive
the rotation around the { axis is stable and for AI negative the
rotation around the m axis is stable, the period | increasing with
decreasing Al




B. EFFECT OF MASS MOTION WITHIN THE SYSTEM

Next, how does a change in the mass distribution inside the
station affect the motion of the station? The total angular impulse
does not change because the mass motion is a result of internal
forces. Nor does the center of mass move. But the origin of the
body-fixed coordinate system does move and the inertia tensor
changes. In addition, we must remember that the angular momentum
varies with location. A mass close to the center of rotation has less
angular momentum than a mass located farther out. Thus a mass
that moves away from the center of rotation is accelerated, thereby
slowing the part of the station it moves to.

Let us assume that a mass m moves from @, to p inside the
station. Although the position vector of the center of mass in the
space-fixed coordinate system does not change, the location R of the
center of gravity in the body-fixed coordinate system does move.
Initially, we have

Z m;é- +m§c, =0

m;#m

-y

With m moved to p the center of gravity has moved to R, given by
M-R=2_mig +m3
'm;;bm
m g ~ mQ,
S ~am —
a— m —
= M Q=% (15)

where M is the total mass of the system.

i
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The angular impulse H, which remains unchanged, is given by

H=) mmxw

L o
with ;i the position vector of m, and :/i the velocity of m, (relative to
the center of mass) measured in space-fixed coordinates.

We write the equation for the angular impulse in body-fixed
coordinates:

.= 8L~
— d (7)) = = A o —
= It(r‘) = 7, + X7

- g, - Ry AX(3R)

3 L

T ml@i-R)(G; - R) e £ milg-ROx Lx(35-R)
Using the formula aX((bXc)s= b(a - c) - c(a + b), we get
H = Im(@-R)xg; -5 miGi-R Ry QT mi(8;-
- mi@rﬁ)‘(ﬁ-’(?;'m) (e

The first two terms show the effect of the mass motion; the last two
terms, which depend only on the mass distribution, must correspond
with equation (3). Evaluating the first two terms further, we note
that because p,; = 0 for all m,; except the moving mass m,

5 wi(3i-R)x g = m(3-Ryx g

11




and, according to the definition of R,

) mi(g-R) = O

Therefore the second term equals zero:
! —_ o [ ]
Z vn;(g;-@) xR= 0

The equation for the angular impulse is now

—

a: m(g—&)x ch* Q.

o~

(17)

The x component of () - I (see equation 16) is given by
&I.l:f)ﬂ p}:m ] (- X)2+(j; YiNG - Zj dem (a )l
Ll W V)= T e HY-2)

Zm (4, *(z-l Z)J Zmi("’ ~){)( )
R i Al

and the other components of () « T have the corresponding form. We
use these equations to evaluate the inertia tensor I:

Zm[}, )*(Z)'—Z>1] o
- Y i (g 27) - LY S miy; 222 mizi+ M (YAZ')

- I‘#’D - N (ji; Z:') +m (‘3,2-}22)" 2Y M(‘j‘ﬂo)
27 m(z-2)+ M(Y4Z?

12
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and (see equation 15)
7 ¥ 1.0y et : m? -3
= - + = )" m —_ —_— — - 18
I& Lc,o* m(} uou.) m(z-z (g 3,,) M(Z Z,) (18a)
Since the body axes are the principal axes for p = p,, we get

hey m Gegsoge) = 25 )y y) e

Similarly, we get

I 1 = I}p*m(«sﬂz—xﬁ ¥ m(7_2~z:)— %L{K-K,)L— "-,3—\"(1—1,,)" (18¢)
L

I, - L,o’fm (k=) +yf-y2) - B (o)~ ?43}(3 40" (184)

Im\ = m<“t'7~“*o”*° - -m—z(*‘“o)(l"zo) (18e)

l'}"\: YY) (l}‘l'jo‘lg = %1(3-‘30)(1“26) (18f)

Equations (17) and (18) describe the dynamics of a rotating space
station with no external torques.

For our numerical evaluation of equations (15), (17), and (18), we
have used a model of a space station similar to one proposed in a study
conducted by the MSFC Propulsion and Vehicle Engineering
Laboratory at the request of the MSFC Future Projects Office
(Figure 2). The station is nearly cylindrical and rotates around its
axis of maximum moment of inertia. The rate of rotation, {2, is
0. 628 rad/sec and the crew compartment extends 12 to 18 meters
from the center of rotation. The resulting artificial gravity, 0%« r

14
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ranges from 0.48g to 0.72g. Three astronauts weighing 90 kilograms
each are free to move about in this area. The maximum moment of
inertia, I,, is 6,000,000kg m?. The moment of inertia around the
length axis, I, is 112,000kg m?.

Several different mass motions were studied. Our study showed
that a station with rotational symmetry around the length axis responds
to mass disturbances, both small and large, with large roll motions.
This is demonstrated on Figure 3, which shows the results of a
digital evaluation. A continuous roll motion is produced in response
to a mass motion from x = 15m, z=0mtox =15m, z =1.8m. The
deflection in 8 is negligible. (The deflection in 0 consists of a
component proportional to cos ¢ and, according to equation (13c),
superimposed on this a component proportional to ¢ " The component
proportional to cos ¢ is caused by the angle between the principal
axis £ and the body axis x.) The mass motion converts the z axis into
an axis of intermediate moment of inertia, the rotation around this
axis is unstable, and because the motion (the distance of m from the
center of rotation increases) introduces a small positive initial roll
velocity, the roll motion is continuous,

But even as little as 0. 2% asymmetry (i.e., the asymmetry of
the model used in our numerical evaluation) is sufficient to insure
that the roll deflection in response to a single motion is limited to
less than 10°. However, because of the absence of damping, whether
or not a new mass motion will increase or decrease an existing
oscillation depends on the timing of the new mass motion.(See the
discussion of cancellation of roll by motion of the astronauts, pg. 28.)

Another disturbance that can be considered is the effect of
rotating machinery (generators, pumps, etc.)on board the station. We
modify equation (17) to include the effect of rotating machinery with
body-fixed axes:

H- pd3-R)x g + QT +k (19

where h is the angular impulse of the rotating machinery. Written
in components, equation (19) becomes

17




—HM9= /B\K+PI (1:[ -rT +m[ z_—(Z‘Z)f)_‘.
H a3 it < L }O““’;)J’ﬂl -] +m;_( ) -(n-4) 2]

Hm9m4>= Z\,,\—P O’i_lerT“ —f—VY\[(df *3—Y)aﬂ

We see from these equations that flywheels can enforce the correct
attitude in the steady state, in spite of mass displacements.

In the steady state, with p, q, X, ¥y, and 2 =0, ¢ and 6 can be
reduced to zero if
k‘&

E\"z\ =Y e
We can determine the required angular impulses to do this for the
maximum possible values of I and I

XZ yz

b=
]
8
»
N
I

270kg - 18m - 1.,8m = 8,750 kg m?

It

270kg + 1.27m - 1.27m = 435kg m?

=
Il

myz

Because the roll deflection is considerably larger than the pitch
deflection, it is more important to reduce roll. Fortunately, this
requires a twenty times smaller angular impulse. Moreover, because
a deflection in the roll orientation is less disturbing to the astronauts
than a roll oscillation, only methods of limiting roll oscillation were
studied. Two methods were studied in detail: controlled motion of
the astronauts and automatic control by flywheels.

18




To simplify our analysis of the effect of rotating machinery with
body-fixed axes, we shall assume that the body-fixed axes are the
principal axes and that the astronauts are at rest, Equations (19)

then become
- Hoinb = by +ply

Hwaem%’-‘ %*ﬂI‘&
Hmém‘ﬁ = '&—g +r I:L

The magnitude of h, that can be tolerated is determined by the
transients it introduces into roll during starting and stopping.

i

We can estimate the initial roll velocity caused by a fast start
(assuming that 6 = 0 initially) from

I‘HF +}L”=0 = o, t L‘é

If we limit the roll deflection to a maximum of 0.1 rad, the roll
oscillation will be approximately sinusoidal, with the relation between
the maximum angular velocity and the angular deflection given by

b L4

m

It follows that

| Aof< L2201 mayl = 850 by’

This angular impulse causes a deflection in 6 after the roll oscillation

is damped out:
| £ 1850 _
6 =-3 = 000,000-0418

= -05" 10'3.17;\;(
19




But, because of their small size, 6 and 8§ can be neglected and we
get for the components of Q:

Using these expressions, we get

2{1‘: (H - 7317_) s O coa?

or

Thus, because H is very large, the change in ¥ resulting from
rotating machinery with its axis parallel to z can be neglected.

Finally, for hy , we get

ﬁ? ~ H (1—-%) co3 B s

Hence an angular impulse h,, causes a steady state deflection in @.
Imposing the same limit on the steady state deflection as we did on
the roll oscillation, we get

by < H()-%7)-0.)
¢ 6000000 - 0.00Z-0.628- Ol

TS0 k%/ > ote

In sum, then, rotating machinery interferes least with the
dynamics of the rotating station when its axis is aligned with the
z axis of the station.

20A
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SECTION III. NUMERICAL EVALUATION

A. THE ANALOG COMPUTER PROGRAM

To study the behavior of equation (19), we programmed it on an
analog computer, The following simplifying assumptions were made:
that m << M, that the position of m in the undisturbed system is at
Yo» %o = 0, that changes in I, I, I, resulting from mass displace-
ments can be neglected, and that small angle approximations will have
no significant effect on the results. We therefore get

I,%'xmafy,j' _Tzzc:my';.; ‘Izar: m A
P %43—’)”9/' 14&941";’; TzY=
(20)

14 =-HO-20+ mayfsm¥ my%m
e mly2- wa,)

L0 =H(I- L)+ muyd-mLglsmiy
+ m(ar-24#) - Ra/
The analog computer program is shown on Figure 4,
The effect of a mass displacement depends on the path and on the
schedule of the displacement. Figure 5 shows the response of the

station to the motion of three astronauts (3-90kg = 270 kg) from {12m,
0, 0} to {18m, 0, 1. 8m} along three different paths:

22
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PathI. From {12m,0,0}to {18m, 0,0} and then to {18m, 0, 1. 8m}
Path II. From {12m,0,0}to {18m,0, 1. 8m} and then to {18m, 0, 1. 8m}
Path III. From {12m, 0, 0}to {12m, 0, 1. 8m} and then to {18m, 0, 1. 8m}

Check runs on a digital computer show good agreement, indicating
that the approximations used have no significant effect on the results.
It follows from equation (l13a) that the pitch amplitude is 0. 007 of the
roll amplitude. This too is in agreement with the computer results.
The steady state pitch deflection can be determined from equation (E)
of the Appendix, where the orientation of the principal axes of the
space station relative to the body-fixed axes is described.

24
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B. EFFECT OF ASTRONAUTS' MOTION

The walking speed was assumed to be 0. 9 m/sec. To simulate
changes in velocity realistically, a first-order lag with a time
constant of one second was added to the velocity term,

Motion in the yz plane, for example the motion of three astro-
nauts from {18m, 0, 0}to {18m, 1.2m, 1.2m]}, changes the direction
of the principal axes 1, { relative to the body axes and causes a roll
oscillation, but the deflection in this case is only 2° If this transfer
occurs in two phases, for example from {18m, 0, 0} to {18m, O, 1. 2m}
and then to {18 m, 1.2m, l.2m}, a small initial roll velocity
(+2.5 - 10-3 rad/sec) is introduced in the second phase. The same
two-phase transfer in a different sequence, i.e., from {18m, 0, 0} to
{18m, 1.2m, 0} and then to {18m, 1.2m, 1.2m}, produces a small
initial roll velocity of the opposite sign.

Because starting and stopping occur in time intervals that are
small compared with the period of the oscillation, the effect of these
on the roll amplitude can be neglected (Figure 6a-c).

Motion in the xy plane causes no roll, as can be seen on
Figure 6¢c, d. The ladder for going from a lower to an upper deck of
the spacecraft should therefore be located in the xy plane.

Motion parallel to, but not along, the x axis (constant z # 0)
introduces large roll disturbances, mainly because of the change in
angular momentum with distance from the center of rotation. The
transfer of this momentum to the roll axis depends only on z, i.e.,
the torque generated by the Coriolis force (Figure b6e-g).

Walking in a circle in the yz plane (Figure 6h, i) introduces two
disturbances: the attitude of the principal axes relative to the body
axes is varied and an angular roll impulse is introduced. The first
disturbance has a period corresponding to the time it takes to walk
around half the circumference of the cylindrical station. Its effect
can be seen in ¢. The second disturbance is the reaction of the
station to the initiation of circular motion by the astronauts. The
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initial roll velocity that results is given by
I:“cl)o: m g'v = 170 &du' ~ ’g m '00) m/aac/

The amplitude of the resultant roll (T = the period of the roll motion) is

<t>q"T 10 pad

All these disturbances are moderate. The roll angle never
exceeds 10°. However, whether the roll of the spacecraft is increased
or decreased depends on the phase of the recurrence of a disturbance.

Figure 7 shows the effect of one astronaut walking synchronously
with a roll oscillation, Whether the effect is one of buildup or of
decay depends on the phase relation. Hence it should be feasible to
use the astronauts for corrective action to counteract roll of the
spacecraft. Figure 7 shows the effect of motion in the x direction.
Figure 7a repeats the effect of rotation of the principal axes by the
transfer of one astronaut from {18m, 0, 0} to {18m, 1.27m, 1.27 m}
Figure 7b shows again that motion in the xy plane does not affect roll.
Figure 7c shows a damping effect (positive z); Figure 7d shows an
augmentation (negative z) for motion in the x direction in phase with ¢;
Figure 7e, f shows that motion in the x direction in phase with é has
no effect.

A more effective and convenient way to reduce a roll oscillation
is shown on Figure 8a-g. Here the motion is parallel to, but not
along, the y axis (constant z # 0) or parallel to, but not along, the z
axis (constant y # 0) in phase with the roll velocity!. The same
motion in the opposite phase causes a buildup.

'Measured as (5, i.e., as the gimbal rate of the inertial platform, or
as p by a rate gyro mounted on the frame of the space station.
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C. AUTOMATIC CONTROL OF STATION'S ROLL MOTION

As already mentioned, properly controlled variations in flywheel
rates could be used to damp out roll oscillations. We shall first
consider the effect of a flywheel with its axis parallel to the x axis.

For simplicity, we assume that IX , 1 2 I =0 and that the
. . Z . . .
astronauts are not moving. The statioh ha’s a roll oscillation intro-

duced by some previous disturbance. We use small angle approximations
and equation (19) becomes, with IZ - IY = Al and Iz >> Al,

__r\ec:— ‘K’&e‘F*PIH’ F’Xc};” (7b9
H ¢ = °II‘25 q= ) +Y ¢

~J;’/ rl; (x/f/

Thus &
© 0 . l Q

D -
0 R
¥
B =
-
4 =7
-
i
>
}
H

and

(21)

0~
R
HIE>
WN
|
F\G
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This equation shows that only a rate of the angular impulse of the
flywheel, hy, generates a torque. Thus if Hx can be varied
synchronously with ¢, the roll oscillation of the station can be
damped. But hy cannot be used to counteract a steady-state
deflection in ¢ caused by Iy,. However, according to Figure 6a, the
largest possible steady state deflection due to Iyz is only 2°%

Another possibility is to use a flywheel with its axis parallel to
the y axis. Using the same approximations, we get

é#:r,-; - AIE rl§?5 + 1 —]/éi*' (22)

We now get a damped roll oscillation if the angular impulse of the
flywheel, hy, is varied synchronously with -¢. Comparing equations
(21) and (22), we can see that for an equal damping effect

-]

b - b

An effective schedule for h was found to be a linear increase with
time followed by an instantaneous braking action. This can be seen on
Figure 9. For this schedule hx/is related to hxma.x as follows
(T = the roll period):

o

bz BT - 194, -19:0628 b
- 1A,

Control by varying hy turns out to be considerably more effective.
Figure 9 shows the performance of such a control system. No phase
adjustments were made to optimize the control. The simulation
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assumes that the flywheel® is driven by a motor with a combined time
constant of 10 seconds. (Therefore hy does not remain constant, as
was assumed above, but decays during the cycle.) The voltage applied
to the motor is constant; only the polarity is controlled. Brakes are
applied before the voltage is reversed. Thus

E = meA«v?/W‘i‘ = C"Zc,

4?"7—:751-“

The maximum required power, P, is half the maximum torque multi-
plied by half the maximum angular rate, i.e.,

m““‘ L,- W’%o ,-LF:

With IF = 2kg m? and he. = 100 1b ft sec-1 = 130 kg m? sec-l, we get

p . o 130 150
mag” 4 1o 2

= 2,” l«)a/H'

The maximum angular rate is therefore

= E_(Z:Gg/mi’/wo

).
= (20 i

' A hydraulic system with circulating pump and valves could well be
another feasible sclution to the control system problem.
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Or, rather than building up an angular impulse and then wasting
the stored energy by braking, we can use a gimbal-mounted gyro with
its axis aligned initially with the z axis (Figure 10). The required
angular impulse, h,, is generated by rotating the gimbal (its axis is
parallel to the x axis) through an angle 6:

%3; ST AL aim §

(Is - Qs is the angular impulse of the spinning gyro.) The other two
components of the angular impulse generated by this rotation are

b= IG’Kg
£’f Is"Qs o &

(I is the combined moment of inertia of the gimbal and the flywheel
around the x axis.) Because it is small, the influence of these other
two components on the motion of the station can be neglected.

E Z/ + Ox kL
[T 8 T(qunforant))
‘U QS o §opl sﬂﬁmg*r{[e S]J
[I ngmg—ﬁﬁ QSMSW\lG,‘,@L

The j and k components of L, along with the centrifugal forces,
constitute the load on the gimbal -- and spin -- bearings. Sufficient
power must be provided to replace the energy dissipated by friction.

if
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Because the station is rotating, Lx # 0. Power is therefore
required to turn the gimbal:

P L, S

This powe_r builds up potential en?rgy:
t(8) 50 S
E-ft,8de= [T, 8 + 0, frain§dS
0 -

$=0 0

(q is neglected as small) or, considering r to be independent of 6:

E=~ Is'ﬂsr( - 00 5)

E::’. 82_ wq#’wcz

This energy has only to be built up. As soon as the torque is re-
moved, the gimbal swings back to the opposite deflection.

It may be advantageous to use moderate rates of rotation of the
gyro., The stored kinetic energy would thus be small, allowing the
control to be switched on and the gyro to be started as required.
The stored kinetic energy for an angular impulse, Ig - (g, of

130 kg m? sec-!is, given thatI. = 2 kg m?,
g g s g

E = 4250 watt sec
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SECTION 1V, EFFECT OF EXTERNAL TORQUES

Still to be mentioned are the effects of external torques. These
have not been considered in our analyses mainly because external
torques in space are small (gravity gradient, magnetic fields,
radiation pressure, drag). They therefore change the angular
impulse only very slowly:

The same can be said of the impact of meteoroids. Roll motion
resulting from such impacts can be damped out as it occurs and the

axis of rotation will be in line with the direction of the angular impulse.

Finally, it may occasionally be necessary to use jets to restore
and maintain the desired rate of rotation and the direction in space of
the axis of rotation.
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SECTION V. CONCLUSIONS

Mass motion in a rotating space station of cylindrical shape
causes the station to oscillate in the roll direction. The more nearly
symmetrical the station is around its length axis, the larger the
amplitude of the roll oscillation will be. But, as is shown by the
example investigated, a difference even as small as 0. 2% between
the moments of inertia of the major and the intermediate axes
suffices to keep the oscillation small. In addition, excessive roll
can be reduced by control systems using a flywheel or corrective
motion of the astronauts.
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APPENDIX

ORIENTATION OF THE PRINCIPAL AXES OF THE
SPACE STATION RELATIVE TO THE BODY-FIXED AXES

The angular impulse is related to the angular velocity by

— I—M -L ’J;‘M
H = ‘:Iwgf I?” 7|
VIWL “‘IVL Iz*

For H pointing in the direction of the principal axis,

e

(L (A)

'LF~ I”‘ﬁ -1,
de(—IT’OI ‘\L*Izr = AT

It follows that the determinant

i

NP

(B)

\
>
—9

|
)__.i
—
1

!
o
i
(N
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»

This cubic equation in A has three roots, \;, X, A3, which correspond
to Ig, Iﬂ, I¢. The value for ) closest to I is Ig. Using A; = Ig,
equations {B) become

The first equation can be interpreted as a scalar producta - (2 =0
indicating that a is perpendicular to {) with

The second equation yields a vector, b, with

b=-1 i+ -1)j-1 k
xy (Y e 7 Yy

The vector a X b has the direction of the principal axis E.
, f %_
v af :

(L“, 1) -1,
| (L n?/ -1

We can now express the orientation of the principal axes relative
to the body-fixed axes by determining the three Euler angles «, B8, Y
We use the same sequence of rotation as we used in converting from
the reference axes to the body-fixed axes. The z axis agrees with Y.,
the € axis with &. We can therefore use the matrix of equation (1):

W

ot
o
1
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(C)

Because a X b has the direction of the £ axis, its component

i.a X bis proportional to cos Y cos B and its component j - a X b is
proportional to sin Y cos B. We determine v for the £ axis (selecting
the smallest Y) from

Yaxe waxw@ mb/ j:; ,,?+I&(I ,) ®

We determine 8 from

'kzx@ _ cam - - L @ (E)

(I* s)(i I‘s) I

I %I?L o (L. 15)

To determine a we rewrite equations (2) using X\, =1
Ta-1 ~T,,r= 0
(—8 “L)p- we,‘i
Ty p Ly L e

3

P\‘P\v

=<
- d-
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and we use the relationship

%i’;f—i{( -y lanp Ly chomay,

Because B, Y are small,
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